新闻标题:延安初中历史辅导
延安初中历史是延安初中历史培训机构的重点专业,延安市知名的初中历史培训机构,教育培训知名品牌,延安初中历史培训机构师资力量雄厚,全国各大城市均设有分校,学校欢迎你的加入。
1、专业的教师团队,掌握前沿的教学方法 2、教学经验丰富,善于激发学生的潜能 3、善于带动学员融入情景体验式课堂
.jpg)
延安初中历史培训机构分布延安市宝塔区,安塞区,子长市,延长县,延川县,志丹县,吴起县,甘泉县,富县,洛川县,宜川县,黄龙县,黄陵县等地,是延安市极具影响力的初中历史培训机构。
学生学习的成功靠动机的激发,而对数学学习的成功心理体验体验,又能激发其强烈的求知欲。因此,教学中必须面向全体,充分发挥学生的主体地位,把全体学生都摆入“学习主人”的位置上。教学过程中随着知识的步步升入,问题练习的设计要有深度,启发引导要研究目的性、层次性和针对性,有目的的为学生创造一些愉快的能充分展示潜在能力的情境,让人人都有成功的机会,人人都有机会享受到学习的与快感,从而激发其强烈的求知欲,促使学生爱学数学。
每次考试后,我们经常听到一些学生说:这次考试我很粗心。而粗心大意的一种现象就是由于跳步而产生的错误,而且往往错误不改。
作文是中考的半壁江山,它的成败直接关系着中考成绩的高低,然而在复习中,学生受素材匮乏、生活阅历少、思路不开阔的局限,复习效果不是太明显,成为学生中考作文出彩的瓶颈。对此,建议采取三线并行的方法。
在函数板块复习中,学生对函数的组合题比较发怵。为此我特意搞了一个专题,先让每个学生都分别搜集一些自己觉得比较重要的、试卷中常见的、以及自己在解答中存有困难的,关于函数知识的问题。接着在小组交流中初步将这些问题汇总、分类,如关于求解析式的、关于求交点的、与面积有关的、关于实际问题处理的、与几何联系成份较多的等等。然后在课堂复习中,选取其中较典型的几个组合题,进行问题的构成分析,比较函数问题的“组构特征”,让学生体会综合题的组成特点,及解答时的处理手段。最后为了便于学生理解与记忆,与学生一起总结与编撰了一个口诀:“平面直角坐标系,象限符号要牢记;直线双曲抛物线,图象性质放第一;四个函数是根本,待定系数求解析;交点方程巧面积,几何建模数形理;平转翻折动点走,设定参量找联系;语言转译觅条件,板块书写最整齐;树立信心不言弃,恐函之症定可医。”取名为“愈恐函诀”。这里要注意一件事,就是这个口诀的得到一定要让学生共同参与,要让学生自主体会,要让学生感到是他们自己总结得到的,而不是教师外加给他们的,教师只是进行了一些文字方面的修改,使之变得更易上口而已。这样学生会加倍地珍惜这个口诀,会主动地有意识地去使用这个口诀。实践表明,有了这个口诀,学生对函数形成了一个总的印象,不仅了解了函数问题的一般组构特征,还明确了这些问题的解决手段。此后,学生对函数组合题地处理能力有明显提升。高频考点的全面调查计划事物总有它一定的法则,中考也不例外。这就需要我们做有心人,认真观察,潜心研究。初中数学的知识点较细的划分大约有150个左右,如果稍粗一些大概可分成60个左右。其中,有些知识点在中考中出现的频率较高,也有些知识点很少出现;有些知识点比较浅显,有些知识点就是为了提高区分度;有些知识点变化较少,有些知识点时常翻新。这些特点学生未必能有效体会,但教师要心里有数,而且在出题或选题时要有意识地进行渗透。同时还要留心每一位学生这些知识的掌握情况,认真做好记录,切实做到定人定点,提高个别辅导的效果。
比如:讲三角形内角和定理时,利用“几何画板”随意画一个三角形,度量出它的三个内角并求和,然后拖动三角形的顶点任意改变三角形的形状和大小,发现无论三角形怎么变,三个内角的和总是180度。又如,是一个无限不循环小数,在以前教学中这个结论是老师直接告诉学生。而计算器进入课堂后,学生就能利用计算器通过不足近似和剩余近似的方法估计的大小,得到越来越精确的近似值,进而指出是一个无限不循环小数的事实,为后面学习无理数打下基础。
学习数学要讲究循序渐进,不要想一步就成。以课本为中心拓展,课本习题一定要做,有些同学感觉课后题不重要而且太简单就有轻视心理,这种想法是一定要打掉,下面是初中数学学习习惯,欢迎各位阅读和借鉴。
76 你们可以托管吗?
类比导入法是以已知的数学知识类比未知的数学新知识,以简单的数学现象类比复杂的数学现象,使抽象的问题形象化,引起学生丰富的联想,调动学生的非智力因素,激发学生的思维活动。例如,用类比的方法引入新概念来对一元二次方程的概念进行教学。我首先学生写出3个一元一次方程,然后让学生与同桌讨论并归纳所写的一元一次方程共同特征:只含一个未知数;未知数的次数为1;整式方程。接着让学生完成书上问题1、2,列出方程①x2+10x-900=0②5x2+10x-2.2=0,再把方程①②与之前自己所写的一元二次方程进行比较,找出共同点:只含一个未知数;整式方程,不同点:未知数的次数不同,由1变成2,请同学们想一想,怎样进行称呼方程①②,由此引入一元二次方程的概念。
好奇是小学生最突出的心理特征,因此在小学数学教学中,教师善于设置悬念,引起学生的好奇心,是激发学生学习兴趣的有效途径之一。如教学乘法估算时,可通过这样一个故事引入新课:山羊大伯开了个自行车店,生意很不错,准备向外招聘一名进货员。小熊和小猴都来报名。山羊大伯要他们每人去购进7辆自行车,每辆的价钱是298元,看谁办得最快。小熊赶紧拿起笔算共需要从山羊大伯那里领取多少钱去进货。而小猴灵机一动,马上向山羊大伯预支了2100元钱就去进货。一会儿而小猴的车已购来了,并交上了发票和找回的14元钱。而小熊才忙着从山羊大伯那里领取他算好所需要的2086元钱去买单车。最后山羊大伯录用了办事又对又快的小猴,小猴用什么办法做得又对又快呢?
学生练习的层次性
新课程中明确指出了在教学过程中,学生应该是学习的主人。为了落实这一要求,必须在课堂上为学生提供更多的自主发言、自主学习和合作学习的时间,而分组教学模式正是拥有着这些显著的特点。
~您凭借什么应战呢7
认真地了解他,正确地对待他
又如在教学了“折扣”这一内容后,我出示了这样一题:“某书店为了推销《数学词典》,打出了这样的广告:《数学词典》每本10元,购买200元以上(含200元)的给予九折优惠,购买500元以上(含500元)的给予八折优惠,假如我们班上42每人均要购买1本,你能不能设计一种最好的购买方案,使每人出最少的钱并购买到《数学词典》。”这样学生根据已学过的知识,都能很快设计出以下的几种方案:方案一:每人都买,各人付各人的钱,全班共要付钱:10×42=420(元);方案二:全班合起来买,总价超过200元,应按九折付钱,10×42×90%=378(元);方案三:想办法和其它班合起来买,使总价超过500元,这样可得本班应付:10×42×80%=336(元)。学生通过将这三种方案相比较,显然可以知道是第三种方案最好。这样通过让学生积极参与并启发学生思维,鼓励学生大胆猜测,勇于质疑,在自主参与、合作探究中拓展实践思路,不断享受成功的体验,感受创造过程中的无限乐趣,对于提高学生应用数学知识的能力和增强学生的积极性都十分的重要。
怎样提高 初中 数学解题能力怎样提高初中数学解题能力?而要唤醒和增强学生的主体意识必须营造平等、民主和和谐的课堂气氛。一个良好的课堂气氛,能促进师生双方交往互动,分享彼此的思考、见解和知识,交流彼此的情感、观念与理念,今天,小编给大家带来数学方法。
质疑教学法
培养学生的创造性思维,需要老师在初中数学教学中,采用发散式思维教学模式,使学生数学思想不受定势或模式的束缚,充分发挥学生的智力因素,引导学生发展创造性思维能力,采取多种教学思路,调动学生思维的活跃性和多向性。在初中数学教学中,老师可以采用质疑式教学法,在课堂上鼓励学生大胆质疑,激发学生探求真理的热情。
又如在教学了“折扣”这一内容后,我出示了这样一题:“某书店为了推销《数学词典》,打出了这样的广告:《数学词典》每本10元,购买200元以上(含200元)的给予九折优惠,购买500元以上(含500元)的给予八折优惠,假如我们班上42每人均要购买1本,你能不能设计一种最好的购买方案,使每人出最少的钱并购买到《数学词典》。”这样学生根据已学过的知识,都能很快设计出以下的几种方案:方案一:每人都买,各人付各人的钱,全班共要付钱:10×42=420(元);方案二:全班合起来买,总价超过200元,应按九折付钱,10×42×90%=378(元);方案三:想办法和其它班合起来买,使总价超过500元,这样可得本班应付:10×42×80%=336(元)。学生通过将这三种方案相比较,显然可以知道是第三种方案最好。这样通过让学生积极参与并启发学生思维,鼓励学生大胆猜测,勇于质疑,在自主参与、合作探究中拓展实践思路,不断享受成功的体验,感受创造过程中的无限乐趣,对于提高学生应用数学知识的能力和增强学生的积极性都十分的重要。
什么是联想和想象?
延安初中历史培训机构成就你的梦想之旅。学初中历史就来延安初中历史培训机构
培训咨询电话:点击左侧离线宝免费咨询
点击交谈