 商洛初中数学机构自创立以来,一直致力于教育和科技的融合,在云和移动互联的时代,教育将走向哪里?
教育将如何与科技更好的融合?在教培行业的4.0时代,是更加高效、更加专注、更加个性化的教育,2000多年前,孔子说因材施教,而今天,有了更加先进的科技,我们才能给教育插上科技的翅膀,让孩子飞的更高。
创办商洛初中数学机构的初衷,就是希望能够为孩子提供真正的个性化教育,通过教育与科技的深度融合,集团已经在内部教学管理体系中,逐步脱离了传统的“老中医”依靠经验治病的模式,通过打造数据驱动的“西医式”教育模式,为孩子提供高效定制的个性化教育。
我们专注于学生的个性化教育,不断研发精准高效的教研工具,长期沉淀每个孩子的学习数据,并不断对高考、中考命题进行大数据模型研究,从而保证每一堂课的高效性、精准性,通过提供空中课堂、智慧课堂、在线或面授一对一、精品小班、自主招生、慧志愿等多种随需定制的辅导形式,让孩子在线上、线下和产品间的学习可自由切换,让孩子学习更高效。

演示教具导入法 演示教具导入法能使学生把抽象的东西变得形象、具体、生动、直观。例如:在讲弦切角定义时,我先把圆规两脚分开,将顶点放在事先在黑板上画好的圆上,让两边与圆相交成圆周角∠BAC,当∠BAC的一边不动,另一边AB绕顶点A旋转到与圆相切时,让学生观察这个角的特点,是顶点在圆上一边与圆相交,另一边与圆相切。它与圆周角不同处是其中一条边是圆的切线。这种教学方法,使学生印象深,容易理解,记得牢。 比如,教学平行线时,许多学生一看其概念“同一平面内永不相交的两条直线就是平行线”觉得挺简单,就可能不求甚解,然后就忽视了本概念的决定性前提:同一平面内,这样就可能在遇到实际问题时出现失误。又如,许多学生由于对概念把握不牢,提到勾股定理就想当然地以为是“勾三股四弦五”,有的甚至忘记了前提必须是直角三角形,更有甚者竟将这个特例当成勾股定理本身,而忽视了“直角三角形两直角边的平方和等于斜边的平方”这个具有广泛指导意义的定理,这就造成在遇到问题时没能生成运用能力,留下遗憾。 可见,学习数学不能急于求成,要脚踏实地从基本概念做起,夯实基础才能稳步前进。引导动手实践 又如在教学平面图形的面积计算公式后,我要求学生归纳出一个能概括各个平面图形面积计算的公式,我让学生进行讨论,经过讨论,学生们归纳出,在小学阶段学过的面积公式都可以用梯形的面积计算公式来进行概括,因为梯形的面积计算公式是:(上底 +下底)×高÷2 。而长方形、正方形、平行四边形的上底和下底相等,即可将这公式变成:底(长、边长)×高(宽、边长)×2÷2 = 底(长、边长)×高(宽、边长); 初中数学试题,从评讲的角度看,分为两种类型:一是有关代数计算方面的试题;二是能利用数形结合求解的试题,主要是几何试题及函数问题。如果是评讲代数方面的计算问题,因为它具有严谨的推理过程,步骤不会多也不会少,我们评讲的重点应该放在计算的格式上,让学生明白每一个环节的依据,督促学生能严格按步骤进行计算。如果是有关几何及函数方面的问题,它的解题过程不会千篇一律,也就是格式并不会固定,只要言之有理就行。重点应放在教会学生能根据题意画出图形,结合相关性质,分清解题思路,合理安排表述的先后次序,写出解题过程。 三、根据评讲内容的重要性、难易度的不同,采取不同的处理方法 在奶奶的细心呵护下,我在不知不觉中长大,可我奶奶的头发也在不知不觉中全白了,脸上的皱纹也在不知不觉中多了起来。 要想学好言语文,提高自己的语言能力,就要有扎实的文字基础,基础知识的学习最注重平时的积累和记忆,如果我们能够在日常的学习中注意积累基础知识,并善于记忆它们,那么在语文考试中,就会感到得心应手,成绩自然也会提高。
(一)、平常的学习中,注重积累知识

|