 南宁青秀区高中政治机构自创立以来,一直致力于教育和科技的融合,在云和移动互联的时代,教育将走向哪里?
教育将如何与科技更好的融合?在教培行业的4.0时代,是更加高效、更加专注、更加个性化的教育,2000多年前,孔子说因材施教,而今天,有了更加先进的科技,我们才能给教育插上科技的翅膀,让孩子飞的更高。
创办南宁青秀区高中政治机构的初衷,就是希望能够为孩子提供真正的个性化教育,通过教育与科技的深度融合,集团已经在内部教学管理体系中,逐步脱离了传统的“老中医”依靠经验治病的模式,通过打造数据驱动的“西医式”教育模式,为孩子提供高效定制的个性化教育。
我们专注于学生的个性化教育,不断研发精准高效的教研工具,长期沉淀每个孩子的学习数据,并不断对高考、中考命题进行大数据模型研究,从而保证每一堂课的高效性、精准性,通过提供空中课堂、智慧课堂、在线或面授一对一、精品小班、自主招生、慧志愿等多种随需定制的辅导形式,让孩子在线上、线下和产品间的学习可自由切换,让孩子学习更高效。

重视数学实践活动,让数学课堂动起来 第三,评讲应注意重点和讲究方法。 4-1 个性化研究院针对中高考的方向出版各科教材如:各科测试卷,《赢在高考》,《赢在中考》《中高考冲刺大关》,《高考填报志愿指南》,学习百宝箱等,有针对孩子学习的薄弱环节为孩子准备个性化教案,同时依附学生在学校所用的教材,同步甚至高于学校的教学深度展开教学,帮助孩子做到归纳总结。学校的教材很据九年义务教育同步教材,在XX使用的教材是个性化教材! 直觉思维是创造性思维活跃的一种表现,它既是发明创造的先导,也是百思解之后突然诞生的硕果。阿基米德定律的发现,元素周期表的再现,就是自由联想或思维活动。在有关问题的意识边缘持续活动,脑功能达到了最佳状态,旧神经联系突然沟通形成新联系的表现。 培养学生的创造性思维,老师应当有意识地帮助学生支发展直觉思维。首先让学生认真掌握每一门学科的基本知识、概念、原理和体系,这是发展直觉思维的根本。其次要引导学生大胆实践、勇于探究,多让学生获得应用知识、解决问题的经验。再者要鼓励学生对问题进行推测或猜想,培养良好的直觉。猜想后要尽量引导学生作出证明。 如:学完了平面图形面积计算,要求学生归纳出所有小学学过的平面图形都能用的面积公式,于是学生提出各种猜想,我让学生分组进行验证,学生经过验证,可以用梯形面积公式。这样学生对已学知识得以巩固熟练,又利用已学知识将猜想得到了证明,提高了学生的直觉思维能力。 当学生猜想错了或不完全对时,老师要加以引导,将这些不成熟的想法,再经过反复思考、改进、完善后可能会很有意义。但绝不能讽刺、挖苦来挫伤学生直觉思维的积极性。要充分利用学生初生牛犊不怕虎的精神,敢于打破砂锅问到底,敢于向权威挑战。如对所学数学教材编排提出自己的建议,自己的设想。教师在创设问题情境时,经常运用直觉思维的方法提出多种不带结论的设想,就会对学生起示范或潜移默化作用。 4数学思维训练技巧三情景教学法 要培养学生创新思维,老师首先要摆正自己在教学中的位置,在日常数学教学中,充分发挥主导作用,引导学生激发数学学习的主观能动性,让他们主动参与到教学中来,去探索、去钻研,才能转化为自己的知识,让学生充分发挥自己的见解,并进行大胆求证,才能培养创新思维。在教学中,老师可以采用情景教学法,将学生的注意力吸引到课堂教学之中,把数学理论内容巧妙地转化为数学问题思维情境,激发学生勇于探索问题、分析问题、解决问题和延伸问题的能力,从而更好地培养学生的创造性思维能力。 例如,在学习新人教版九年级数学上册“中心对称”一课中,为了让学生充分理解两个图形关于一点对称的概念,并掌握它们的性质,老师通过创设情境,结合课本62页的图形,让学生先观察,再回答问题:把其中一个图案绕点O旋转180°,你有什么发现?先让学生从旋转变换的角度分别观察两个图形之间的关系,从而引入中心对称的定义。让学生体会到知识间的内在联系,中心对称实际上是旋转变换的一种特殊形式(中心对称中要求旋转角必须为180度),渗透了从一般到特殊的数学思想方法。接着,对“轴对称”和“中心对称”的概念进行比较,让学生自主探究轴对称和中心对称的区别。引导学生经历“观察、猜想、归纳、验证”的数学思想,提高了学生分析问题、解决问题的能力,有效地培养了学生的创造性思维。 所谓“课本”,即一课之本。许多同学,尤其是高三学生,认为现在高考的阅读分析材料都是课外的,课本不闻不问,置之脑后,整天沉溺于题海之中,结果是耗时费力,广种薄收,效果甚微。比如文言文的学习,课内篇目还没有读懂过关,词法、句法没有学懂弄透,就急于到题海里去“畅游”,显然是枉费心机,本末倒置。课内文言文这只“麻雀”,仔细解剖透彻了,才能在课外举一反三,触类旁通。该背诵的一定要背得滚瓜烂熟;该熟读的一定要烂熟于心。一般来说,考试的材料取自课外,但考点和答案却在课内。 为了使学生建构完整的数学知识,首先要设计学生的学习活动。这需要教师创设问题情境,设计时要注意以下几个方面:①能揭示数学知识的现实背景和形成过程;②适合学生的学习水平,使学习活动能顺利展开;③适当数量的问题,使学生有充足活动体验;④注意趣味性,活动形式可以多种多样,引起全体学生的学习兴趣。(2)体现数学知识形成中的数学思维方法。

|