 新乡红旗区中考冲刺学校自创立以来,一直致力于教育和科技的融合,在云和移动互联的时代,教育将走向哪里?
教育将如何与科技更好的融合?在教培行业的4.0时代,是更加高效、更加专注、更加个性化的教育,2000多年前,孔子说因材施教,而今天,有了更加先进的科技,我们才能给教育插上科技的翅膀,让孩子飞的更高。
创办新乡红旗区中考冲刺学校的初衷,就是希望能够为孩子提供真正的个性化教育,通过教育与科技的深度融合,集团已经在内部教学管理体系中,逐步脱离了传统的“老中医”依靠经验治病的模式,通过打造数据驱动的“西医式”教育模式,为孩子提供高效定制的个性化教育。
我们专注于学生的个性化教育,不断研发精准高效的教研工具,长期沉淀每个孩子的学习数据,并不断对高考、中考命题进行大数据模型研究,从而保证每一堂课的高效性、精准性,通过提供空中课堂、智慧课堂、在线或面授一对一、精品小班、自主招生、慧志愿等多种随需定制的辅导形式,让孩子在线上、线下和产品间的学习可自由切换,让孩子学习更高效。

体会按照一定顺序说明事物的方法 针对这种情况,作为教师首先要不断鼓励学生,使他们敢说、爱说,怎样想就怎样说,说错了重说,培养学生慢慢学会说话。其次,课堂中还应充分利用讨论的机会,锻炼学生去说。在教学过程中,一些简单的例题可由学生模仿教师到讲台上给大家讲解,说说自己对知识的理解,为什么这样理解,表达出自己的思维过程。 任何一个数学概念都不是凭空产生的,都有其产生的实际背景和缘由,可能是现实的生产或生活背景,可能是数学自身发展的必要。《课程标准》指出:“在教学中,应当从实际事例和学生已有的知识出发引入新的概念。”也可以通过在课堂中现场操作与演示的方式引入新概念。 例如,教学“圆柱体的体积”时,在学生已经掌握圆柱的体积计算方法后,利用原例题,变原有条件为“把一个直径20厘米的圆柱,沿底面直径从上到下分成若干等份,然后拼接成一个和它体积相等的长方体,这个长方体的表面积比原来的圆柱表面积增加7平方厘米,长方体的体积是多少?”教师先为学生提供了一个真实的经验情境。学生通过观察会发现,圆柱变形后,新形体和原形体等积;新形体的长恰好是圆柱底面周长的1/2,新增表面积7平方厘米正好是圆柱体变形后所得长方体左右面面积之和。如此分析探究之后,学生很快会得出这个长方体(即变形前圆柱体)体积为“长方体左(右)面积×长方体的长”。此时学生的思维方向很明确,且有足够的思维空间。因为长方体左(右)面积=圆柱的底面半径(r)×圆柱的高(h)=hr;长方体的长=1/2圆周长=πr。所以,圆柱体变形后得到的新的长方体的体积为“长方体左(右)面积×1/2圆周长”,即“hr·πr”,整理后得V=πr2·h。上述思维活动加深了学生对圆柱体计算公式推导过程的理解,锻炼了学生思维的独立性与敏捷性,创造性地应用已有知识解决了新问题。 如“概念关”里的正、负数、相反数、数轴、绝对值意义,“法则关”里的结合律、分配律以及异号两数相加的法则,在“运算关”强调一步算错,全题皆错等等。讨论完毕选出学生代表,在全班进行讲解,最后学生代表总结。通过这一活动,不仅使旧知识得以巩固,而且能使学生处于“听得懂,做得来”的状态。 六 当然原版书也不是盲目阅读的,7-12岁孩子可以上英语补习课,经过老师的点拨与阅读训练,扎扎实实了解阅读内容以及书里描绘的风土人情。

|