Course navigation
西安高陵区中考冲刺机构自创立以来,一直致力于教育和科技的融合,在云和移动互联的时代,教育将走向哪里?
教育将如何与科技更好的融合?在教培行业的4.0时代,是更加高效、更加专注、更加个性化的教育,2000多年前,孔子说因材施教,而今天,有了更加先进的科技,我们才能给教育插上科技的翅膀,让孩子飞的更高。
创办西安高陵区中考冲刺机构的初衷,就是希望能够为孩子提供真正的个性化教育,通过教育与科技的深度融合,集团已经在内部教学管理体系中,逐步脱离了传统的“老中医”依靠经验治病的模式,通过打造数据驱动的“西医式”教育模式,为孩子提供高效定制的个性化教育。
我们专注于学生的个性化教育,不断研发精准高效的教研工具,长期沉淀每个孩子的学习数据,并不断对高考、中考命题进行大数据模型研究,从而保证每一堂课的高效性、精准性,通过提供空中课堂、智慧课堂、在线或面授一对一、精品小班、自主招生、慧志愿等多种随需定制的辅导形式,让孩子在线上、线下和产品间的学习可自由切换,让孩子学习更高效。

虽说是平方差公式,但是哪一个数的平方减去哪一个数的平方,学生并没有深究,他们从公式的表面来看,好像是两个二项式中的第一个数的平方减去第二个数的平方。例如这道题很多学生就是这样做的:(xy)(xy)=x2 y2.通过这道题的练习,暴露出了学生对公式的本质特征并没有掌握。带着问题,引导学生研究公式(a+b(ab)=a2b2后发现,公式中前后有一个相同项,又有一个互为相反数的项,它的结果实际等于相同项的平方,减去互为相反数的项的平方。学生理解了公式的本质特征后,做这类题就得心应手了。学生也知道了凡是符合了前后有一个相同项,又有一个互为相反数的项的两个二项式的积就可应用平方差公式计算,否则就不就不能应用平方差公式。这样学生做能否用平方差公式计算的辨析题,只要稍加观察,就可选出正确的答案。
强调式导入法
强调式导入法是根据中学生对有意义的东西感兴趣的特点,一上课就叙述本课或本章的重要性的一种方法。例如:三角形是平面几何的重点,而圆是平面几何重点的重点,它在中考试题中占有重要地位,是将来学习深造的基础。今天,我们就学习第七章圆。总之,数学的导入法很多,其关键就是要创造最佳的课堂气氛和环境,充分调动内在积极因素,激发求知欲,使学生处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。
辨证唯物主义告诉我们,事物变化的决定因素是内因,外因只能通过内因才能起作用。培养学生的学习兴趣,必须首先弄清学生的实际,懂得学生在想什么、干什么,希望老师为他们做些什么;必须弄清学生现有认知水平、对基础知识的掌握程度;通过座谈、提问、检测、问卷调查等渠道了解学生的知识现状和学法现状,根据学生现有的能力和水平进行教学;必须掌握学生的思想动态,帮助他们树立起学习数学的信心,培养起他们热爱学习、酷爱学习的品格;
强调学生是学习的主体,教师的主导作用必须与学生的主体作用相结合。
3初中数学习方法二函数与方程:函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型,然后通过解方程(组)来使问题获解.函数与方程有密切的关系,如一元一次函数baxy,就可以看作关于x、y的二元方程0ybax;二元方程0ybax可以看成y是x的一次函数.可以说,函数的研究离不开方程.列方程、解方程和研究方程的特性,都是应用方程思想的体现.转化与化归:转化与化归是把不熟悉、不规范、复杂的问题转化为熟悉、规范、简单的问题.它可以在数与数、形与形、数与形之间进行转换;消元法、换元法、数形结合法、求值求范围问题等等,都体现了转化与化归思想.如很多四边形的问题可以转化为三角形的问题来研究;研究两直线的位置关系可以转化为研究角的数量关系;如学完初一有理数的运算法则后,将几种运算法则综合起来去认识:减法、乘法是转化为加法来研究的,除法、乘方是转化为乘法来研究的.再如求不规则图形的面积可以将其分割或将其补充,转化为规则图形来求,等等.分类讨论:在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论思想.引起分类讨论的原因主要是以下几个方面:问题所涉及到的数学概念是分类进行定义的.如

温馨提示:提交留言后老师会第一时间与您联系!热线电话: